Linear Geometry in Space

- $|\vec{a} \times \vec{b}|$ is the area of the parallelogram formed by \vec{a} and \vec{b} .
- Triple Scalar Product: $\vec{a} \cdot (\vec{b} \times \vec{c})$

• Let
$$\vec{a} = \langle a_1, a_2, a_3 \rangle, \vec{b} = \langle b_1, b_2, b_3 \rangle$$
, and $\vec{c} = \langle c_1, c_2, c_3 \rangle$.
• $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

- Represents the volume of the **parallelopiped** formed by \vec{a} , \vec{b} , and \vec{c} .
- The tetrahedron formed by \vec{a} , \vec{b} , and \vec{c} has one-sixth of this volume.
- **Lines** in three-space:
 - Let \vec{r}_o be the position vector of a point on a line \vec{r} in three-space, and let the direction vector \vec{L} be parallel to \vec{r} .
 - Parametric equation: $\vec{r}(t) = \vec{r}_o + t\vec{L}$
 - Symmetric equation: $\frac{x x_o}{a} = \frac{y y_o}{b} = \frac{z z_o}{c}$
 - Note: Three variables and two constraints. One degree of freedom.
- **Planes** in three-space:
 - Let \vec{r}_o be the position vector of a point on a plane in three-space, and let the vectors \vec{a} and \vec{b} lie in the plane.
 - \circ $\vec{n} = \vec{a} \times \vec{b} = \langle a, b, c \rangle$ is normal to the plane
 - Vector equation: $\vec{r}(s,t) = \vec{r}_o + s\vec{a} + t\vec{b}$
 - Parametric equation: $\vec{r}(s,t) = \langle x(s,t), y(s,t), z(s,t) \rangle$
 - ax + by + cz = d, where $\vec{r}_o \cdot \vec{n} = d$ and $\vec{n} = \langle a, b, c \rangle$
 - Note: Three variables and one constraint. Two degrees of freedom.
- Basic Matrices and Linear Algebra:
 - Very useful in representing linear transformations.
 - This is seen in change of variables when transformations are needed.
 - Any systems of linear equations can be appropriately written as a matrix
 - Reduced-row echelon form
 - Perform **Gaussian elimination** to find the reduced-row echelon form of a matrix to find the intersection of planes (i.e. solving the system of linear equations).
 - Determinant
 - Only applies to square matrices
 - Useful in computing cross products and triple scalar products
 - Very useful in multivariable analysis