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o Represents the volume of the parallelopiped formed by a


, b


, and c

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o The tetrahedron formed by a


, b


, and c


has one-sixth of this volume. 

 Lines in three-space: 

o Let or


be the position vector of a point on a line r


in three-space, and let the 

direction vector L
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be parallel to r
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 Note: Three variables and two constraints. One degree of freedom. 

 Planes in three-space: 

o Let or


be the position vector of a point on a plane in three-space, and let the 

vectors a


and b


lie in the plane. 
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 Note: Three variables and one constraint. Two degrees of freedom. 

 Basic Matrices and Linear Algebra: 

o Very useful in representing linear transformations. 

 This is seen in change of variables when transformations are needed. 

o Any systems of linear equations can be appropriately written as a matrix 

o Reduced-row echelon form 

o Perform Gaussian elimination to find the reduced-row echelon form of a matrix 

to find the intersection of planes (i.e. solving the system of linear equations). 

o Determinant 

 Only applies to square matrices 

 Useful in computing cross products and triple scalar products 

 Very useful in multivariable analysis 

 

 

 

 


